a2 United States Patent

Fischer et al.

US009354848B2

US 9,354,848 B2
May 31, 2016

(10) Patent No.:
(45) Date of Patent:

(54) SYSTEM FOR THE DISCOVERY AND
PROVISIONING OF ARTIFACTS AND
COMPOSITES

(735)

Inventors: Peter Fischer, Filderstadt-Bonlanden

(DE); Hendrik Haddorp, Holzgerlingen
(DE); Oliver Koeth, Stuttgart (DE);

Andreas Nauerz, Boeblingen (DE)

(73) Assignee:

International Business Machines

Corporation, Armonk, NY (US)

Notice:

")

Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 644 days.

@
(22)

Appl. No.:
Filed:

(65)

US 2012/0216180 A1

13/411,577

Mar. 4, 2012

Prior Publication Data

Aug. 23,2012

Related U.S. Application Data

(62)
20, 2008.

(30)
Jun. 27, 2007

(51) Int.CL
GOGF 9/44
GOGF 9/445
USS. CL
CPC

(52)

(EP)

Foreign Application Priority Data

(2006.01)
(2006.01)

Division of application No. 12/142,952, filed on Jun.

07111107

GO6F 8/36 (2013.01)

(58) Field of Classification Search
USPC 717177
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

7,774,791 B1* 82010 Appelbaumetal. 719/318
2005/0268280 Al* 12/2005 Fildebrandt 717113
2006/0036993 Al* 2/2006 Buehler et al. 717/104
2007/0067373 Al* 3/2007 Higgins et al. 707/206
2008/0033785 Al* 2/2008 Anke ... 705/10

* cited by examiner

Primary Examiner — Ryan Coyer

(74) Attorney, Agent, or Firm — Steven M. Greenberg, FEsq.;
CRGO Law

(57) ABSTRACT

The present invention relates to software development in a
networked environment, and in particular to a method for
automatically assisted generation of composite applications
which are composed of instantiable components. The method
includes a) dynamically accessing a data source comprising
one or more components being potentially suitable for being
used within said composite application, b) parsing said data
source for a predetermined searched component according to
apredetermined functionality specification standard, ¢) rank-
ing found components according to predetermined ranking
criteria, d) defining a list of selected usable components from
said ranking, e) storing at least a subset of said selected
components locally,) automatically deploying said compos-
ite application from said selected components.

4 Claims, 15 Drawing Sheets

10: Portal
1: Al
13: TAI 15: CAl 29: Portal Handler
21: Instantiation 44; Composite
Agpplication
&2 Lookep Somp
46: Context
23: template
8: Portal Objegcts
P /
27: Local list of 1
Components -

Architecture of composite application infrastructure

INVENTIONAL

US 9,354,848 B2

Sheet 1 of 15

May 31, 2016

U.S. Patent

V1 DI4

18V d0ndd

armongseygul vonesidde a150dwod Jo IMOaNYIIY
A]

5)29(qO teHod 8

Iajpuey |epod:6Z

\

sjuauoduion | k

40 35I| [8207:£Z

, ajejdwa) gz

PEjUOY 67

uones|ddy
ajisodwon gl uopenuesu 32}

IV Sl IVL €}

v il

leHod:0}

US 9,354,848 B2

Sheet 2 of 15

May 31, 2016

U.S. Patent

dl "DId

TN
(oneys) (oness)
Bojeien Ansibay
ajejdwa] :02Z jusuodwon :g}
| o~

juauodwo9 jusawhoidaq :y)

sSliaulejuod swnuny :Zi

leyxod 01

ﬁ (oness)

ejeq
aouejsu| 9L

US 9,354,848 B2

Sheet 3 of 15

May 31, 2016

U.S. Patent

V< 'DId

_ dejue i9¢ _

AS1ive

dwo)p
"qns B UCHESYRON
b: 4

duwion L:0A09810
dwoy AngiBoy 92 T

FOUEILOD BWIRLNY T /
X

UCRENUESY) 11T

\

eopusg AnsBey weyLY 122

lepod: 0T

:.J
(an=is)

2eq

eumsy)
B)

US 9,354,848 B2

Sheet 4 of 15

May 31, 2016

U.S. Patent

d<¢ DId

TVNOLLNAANI

amgonnsequr uonedsjdde sysoduwiod Jo aImdARIYoIY

\ﬂ sjuauodwog
301511 |B207 LT
»
/. ER-EGAL
. AMERIORGC MY
blqo 1eLod 18 1,
. ejejdwa) g2
.
vv
f‘
xauo) op
dhurey dnyooy igy
uopesyddy
aysodwo) py UoNBIURISU) 11T
19|pueH [eHod 6T V354 Vi€l
iVl

{eliod o4

US 9,354,848 B2

Sheet 5 of 15

May 31, 2016

U.S. Patent

VEDId

Ansi3ax [eoo] ur ojejdway 21038 AjjeuondQ o€

A

ore1dwa) Jo peo[umo(0€¢

0014108 K19A00s1p 9je[dwd) e1A jejdwro) 10} YoIeoS :(7¢

US 9,354,848 B2

Sheet 6 of 15

May 31, 2016

U.S. Patent

de¢ DId

[43 0t

Asibay
ey

Bojejey

0¢

(onmys)

Bojejen

ojeidwa)

ojejdwaj

0teg

wm\/ duiod

‘qng ¢ UoNEILHON

f i

durop Aiysibay

dwo) Asaacasiq

A-ll-/l

aoiniag Ansibay joeyuy 12z /

dwod justy “

SJUIEIU0D NE_E:E 2L

uonenuESY) 147

oiLg
fedod 01 (aneys)
/ eeq
aIoueIsu|
T
91

81

US 9,354,848 B2

Sheet 7 of 15

May 31, 2016

U.S. Patent

V¥'DId

Ansi3a1 [8o0[Ul Sjoe}ILIR 910)S A[[euondQ 0y

A

10BJI1IR JUBAS]AI JO UONIA[AS PRJRWIOINE IO [BNUBIA 0€h

‘dejdwd) o) woyy
ejeprjow Juisn 991AISS A1SI3a1 jorjnae Ay} A1onQ) 107y

A

orejdwd) e ajenuelsy] 0[y

US 9,354,848 B2

Sheet 8 of 15

May 31, 2016

U.S. Patent

dv DId

[43

0¢

i {oness) {oness)
o Bojejen AnsiBay
ayedway) Jusuodwio)
AiysiBay Bojejen
PRIy ajeidway /
/7 ovy
118 4
dwo) dwon juawfojdag
‘qng g UOnREBOON N 1
SISUIBJUOT IWBLNY / /Q F‘
J - —%
dwog Ansibey dwog Kisaoosig 0zt uonenuEISU 11T //
asusg Ansibay joeupy 1exod 01 ﬂ«_“w%
asuejsuj

US 9,354,848 B2

Sheet 9 of 15

May 31, 2016

U.S. Patent

V& DIA

UOISISA Mau Yy} peotumo(-0S

[

(e1quedwos Ay
ST uoIsIoA pajepdn j1 euondo) yuouodwod
mau 2t} 3dope 01 UOISIIAP J0JRNSIUIPY (€S

jusuodwod mau oy INoqe [euod
SULIOJUI 9OTAISS UOTIBIJNION :07S

4

juouodwod sajepdn AST :01S

US 9,354,848 B2

Sheet 10 of 15

May 31, 2016

U.S. Patent

weyuE

d¢ ‘DOId

AnsiBoy Bomen
wepuyY seidway

9g

Ast
B3

b

i

dwog Knsibay
74

dwog Aieacasig
B 24

solaleg Ansibey oepy 12z

(1[4

82

0C

(snms)
Bojejen
ayejdiis]

&

dwog juewlojdagypl

{oness)
AnsiBoy

jusuodwio)

[

}———1

LY

SIBUIBJUOD BWRUNY &/

X

uoneguesul 11z

N

1eHod 10T

(onesrs)
eeg
ausy|

91

U.S. Patent May 31, 2016 Sheet 11 of 15 US 9,354,848 B2

610: Invoke Lookup-component

4

620: Identify components’ in the template

y
630: Lookup components in the local
component list
-prior art -

640: If not installed in the system (invention)

~650: Lookup the component in a
remote component list

—660: Get the binaries for the component
and deploy it locally

670: Create instances as described in the
template and register them in the context
--E.g. number of instances,

initialization values, etc.

FIG.6A

US 9,354,848 B2

Sheet 12 of 15

May 31, 2016

U.S. Patent

d9 DIA

syuEouRy 2
15} BYUNY 10D

S

sjuauodwon

099

s303[O |eHOd 8

Jdjpuey jeuod 162

> | oisieoon

e

®

.

.

9

}x23u0] 9f

uonedlddy
ajsodwo) pp

ejep-ejaw
juauodwon
8y

aejdwNn ez

0i9 0z

>~

dwo) dnyoo
A4

uoljejjueisuj :ig

Ivd:G1

vl et

Vb

|eyod 01

U.S. Patent May 31, 2016 Sheet 13 of 15 US 9,354,848 B2

710: Invoke Lookup- component

A

720: Identify components’ meta-data in
the template

*
730: Lookup components that fit best

l

740: Optionally if not installed in the system
yet

—750: Lookup remote

—=760: Get the binaries for the component + deploy
the component

r

770: Create instances as described in the
template and register them in the
context

FIG.7A

US 9,354,848 B2

Sheet 14 of 15

May 31, 2016

U.S. Patent

094

sjusundueg o
PEE LN O

T

sjuauodwon
_——% }01Si| |B207T |

e 12
. ejep-ejaw
0¥L
0cs oje|d\e} | oz
1XaJu09 | 01Z
‘9p ,)
uonesyddy YA 4
sysodwo) pp uonenuejsy) : 1.z
i3|puUeH |euod 62 IvO -6l V1€l
iv:ii
leyod 0l

US 9,354,848 B2

Sheet 15 of 15

May 31, 2016

U.S. Patent

8 DA <qTTO0qITo0p/>
<2IN3oNnI3AS/>
<ISPTOF/>
<yadsp/>
<uTW/>0QT<UTW>
<yadsp>
<I2pTOIF>
<2IN30NI3S>
<9ZTS/>
<XBw/>QQI<xeu>
<uTw/>QT<uTU>
<BZTS>
<uw'"'//7d334,=qTI00SUTWX qITO0qITO0P> =
juouodwoo A1eiqi[JUaWNdOp Y~ —

<IepuaTed:IepusIed/>
<K103001TP/>dV¥AT<AI0103ITP>
<sTT102030ad/>
<TTo2030xd/>TedI<TT00030ad>
<sTT102030xd>
<w"'°//:d33Y4,=TRPUSTRD::SUTWX IPPUSTED:ILPUSTEI>

juouodwiod Jepuded Yy —

<TTew:TTRW/>
<K103091TP/>dVAT<ATI0302ITP>
<sTT0o0030xd/>
<TT1092030ad/>£d40d<TT102030ad>
<TTo0030ad/>dINS<TT0o030ad>
<sTT100030xd>
<u'**//:d33y,=TTeWw:SuTwx TTew:TTeu> .
jusuodwod frewy —
giep-e1owl Jusuodwod sjdueg

US 9,354,848 B2

1
SYSTEM FOR THE DISCOVERY AND
PROVISIONING OF ARTIFACTS AND
COMPOSITES

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims priority to U.S. patent application
Ser. No. 12/142,952, currently pending, filed Jun. 20, 2008,
which claims priority under 35 U.S.C. §119(a) to European
Patent Application Serial Number 07111107 .4, filed Jun. 27,
2007, the entirety of which are incorporated herein by refer-
ence.

1. BACKGROUND OF THE INVENTION

1.1. Field of the Invention
The present invention relates to software development in a
networked environment. In particular, it relates to a method
and system for automatically assisted generation of compos-
ite applications which are composed of a plurality of compo-
nents, and in which method a template means defines the
requirements and specifications of the components of the
composite application, and wherein the template serves as an
input for instantiating the composite application.
1.2. Description and Disadvantages of Prior Art
In this field the term “composite application” defines an
application hosted on a web portal platform which is built by
combining and connecting multiple components such as port-
lets, wikis, document libraries or web services, for a particu-
lar purpose such as a shop or a virtual teamroom application.
A single portal platform may host multiple instances of the
same composite application, for example different team-
rooms for different associated user communities. Composite
applications are built from a template describing the con-
tained components and their set-up and interconnection.
FIGS. 1A and 1B illustrate a prior art system architecture
whichisused in prior art for building a composite application.
FIG. 1A shows the overview of the components that build
up the prior art application infrastructure 11,—abbreviated
herein also as Al—system architecture within an overall por-
tal system 10. The application infrastructure comprises:
the templating application infrastructure 13—abbreviated
herein also as TAI—that handles the templates in the
system and the creation of new composite applications,

composite application infrastructure 15—abbreviated
herein also as CAl—that handles the application
instances 19 during runtime and manages connections
and the data flow between the components of an appli-
cation,

the component registry 27 that manages the business com-

ponents installed in the system, and

the portal handler 29 which is a specific local component

that manages any portal related artifacts 8 like pages or
portlets for the application infrastructure in the portal,
and which is used by the instantiation component 17 to
create such artifacts during the creation of a new com-
posite application.

The templating application infrastructure (TAI) compo-
nent 13 manages the templates 23 in the system which contain
references to instantiable components in a local list of com-
ponents 27. As an example, a template for shopping applica-
tions could consist of a reference to a document library com-
ponent which is used to hold the available goods and their
descriptions, a shop portlet that lets clients process actual
shopping transactions, an invoice business component that

10

15

20

25

30

35

40

45

50

55

60

2

handles the payment process and a blogging component that
allows clients to comment on their satisfaction.

The TAI component 13 also creates application instances
from the templates via an instantiation component 17, which
creates separate instances of the referenced business compo-
nents, typically by creating or copying individual configura-
tions for these components such that multiple application
instances can be created from the same template without
interfering with each other.

For the above mentioned sample template, the instantiation
17 would, among other things, create an individual storage
compartment in the document library, an individual configu-
ration of the invoice component referring to the bank account
and an individual configuration for the shop portlet that is set
up to display goods from the created document library and to
delegate payment processing to the created invoice compo-
nent instance.

In particular, the instantiation 17 needs to create the nec-
essary portal artifacts like pages that allow to interact with the
created composite application, which is typically done by
employing a specific handler 29 that creates those portal
artifacts 8 and links them with the business components of the
application.

The created composite application instances 19 hold a
context 25 that lists the component instances that make up the
composite application

FIG. 1B shows an overview of the storage components
involved in the portal architecture 10 that comprises deploy-
ment related code in a deployment component 14 and a runt-
ime environment in one or more runtime containers 12 where
the deployed components are executed.

For the composite application context deployed artifacts
are:

application components stored in a component registry 18,

templates stored in a template catalog 20.

This data is then referenced by the application’s instance
specific data 16.

In prior art composite applications and their components
which are also referred herein as “artifacts” have to be indi-
vidually developed or supplied by a vendor. Specifically,
when different composite applications or artifacts are offered
by different vendors a decision which composite application
or artifact to use for building up a new, own composite appli-
cation requires significant knowledge about the properties of
the artifacts offered by the various vendors. These properties
comprise the scope of functions, an artifact is able to deliver,
compliant of input data and output data in order to build in an
artifact into the planned own composite application, as well as
precise descriptions of APIs to other artifacts or components
cooperating with. This is the reason why such artifacts need to
be manually observed, analyzed and finally deployed. Fur-
ther, a planned composite application needs then to be manu-
ally assembled by using the artifact mentioned above. The
assembly can then be stored as a template.

Alternatively, composite applications can also be created
based on templates that contain the list of components that
build up the composite application. If any of the respective
components is not available in the system the creation of the
composite application will fail. So, always, some manual
work is necessary for creating a composite application.

Disadvantageously, this manual work requires much skills
and experience. Further, in case of updates for certain artifacts
which have been used for building up the composite applica-
tions it is a difficult work to observe and analyze if such new
update is suitable for being build in an existing composite
application in order to replace an older version thereof. Again,
the functional scope must be analyzed, the interfaces must be

US 9,354,848 B2

3

observed in order to comply with those being used in the
actually existing composite application and, potentially, a
decision has to be taken if or if not to extend the composite
application in order to integrate some new function offered by
such new update of an artifact as mentioned above.

Disadvantageously, the assembly and keeping up-to-date
of such composite applications is to much time-consuming.

1.3. Objectives of the Invention

It is thus the objective of the present invention to provide a
method for automatically assisted generation of composite
applications which is more flexible and requires less skill and
time for building a composite application or for keeping it
up-to-date.

2. SUMMARY AND ADVANTAGES OF THE
INVENTION

In short words, the inventional method discloses two pro-
cessing parts: A first part for implementing a dynamic dis-
covery and deployment of components referenced by a tem-
plate, and a second part for performing an automated
assembly of components based on meta data, e.g., a compo-
nent to store documents, and a component to handle mail.

The above objective of the invention is achieved by the
features stated in enclosed independent claims. Further
advantageous arrangements and embodiments of the inven-
tion are set forth in the respective subclaims. Reference
should now be made to the appended claims.

According to its basic aspect the present invention dis-
closes amethod for automatically assisted generation of com-
posite applications preferably implemented in an application
server, or specifically in a portal server, which composite
applications are composed of a plurality of instantiable com-
ponents, wherein a composite application infrastructure
(CAI) component handles application instances during runt-
ime and manages connections and data flow between said
components of a composite application, and wherein a tem-
plating application infrastructure (TAI) component manages
templates (23) which contain references to said instantiable
components. This method is characterised by an automatic
component discovery comprising the steps of:

a) dynamically accessing a data source such as e.g. a template
catalog, an artifact registry, or some libraries located locally
or remote in a network, which data source comprises one or
more components, being potentially suitable for being used
within the composite application,

b) parsing the data source for a predetermined, searched
component according to a predetermined functionality speci-
fication standard, as exemplarily given in FIG. 8,

¢) ranking found components according to predetermined
ranking criteria,

d) defining a list of selected usable components from the
ranking,

e) storing at least a subset of the selected components locally,
preferably at the application server,

f) automatically deploying the composite application using at
least one of said selected components.

The step of discovering components may include the
access of data sources located local or remote relative to the
server which generates the composite application.

Further the process of installing a discovered component
into said composite application may be done advantageously
in an automated way without major human interference.

Further advantageously, an automatic versioning manage-
ment may be included by enriching the inventional method,
wherein a component is used for an instantiation of a com-
posite application is automatically monitored for updates

10

15

20

25

30

35

40

45

55

60

65

4

thereof, and wherein in case a new update is discovered, the
step is performed of checking if its requirements comply with
those of the composite application, and, if it complies, to
perform the step of automatically binding the new updated
component into the composite application.

3. BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example and
is not limited by the shape of the figures of the drawings in
which:

FIGS. 1A and 1B illustrate the most basic structural com-
ponents of a prior art hardware and software environment
used for a prior art method at a portal site,

FIGS. 2A and 2B illustrate the most basic structural com-
ponents of a inventional hardware and software environment
used for a preferred embodiment of the inventional method
again at a portal site,

FIGS. 3A and 3B illustrate the control flow of the most
important steps of a preferred embodiment of the inventional
method, when searching for a template,

FIGS. 4A and 4B illustrate the control flow of the most
important steps of a preferred embodiment of the inventional
method, when searching for artifact using meta data from a
template described with reference to FIG. 3,

FIGS. 5A and 5B illustrate the control flow of the most
important steps of a preferred embodiment of the inventional
method, when managing updates of artifacts discovered
according to FIG. 4 incorporated in a composite application
based on a template described with reference to FIG. 3,

FIGS. 6A and 6B illustrate the control flow of the most
important steps of a preferred embodiment of the inventional
method, when automatically creating an instance of a com-
posite application using artifacts discovered according to
FIG. 4,

FIGS. 7A and 7B illustrate the control flow of an alterna-
tive embodiment of the inventional method, when automati-
cally creating an instance of a composite application using
artifacts discovered according to FIG. 4,

FIG. 8 shows some details for sample component meta
data.

4. DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

FIG. 2A illustrates the system architecture used in a pre-
ferred embodiment of the present invention, distributed over
a network, such as the internet. FIG. 2B shows details at the
portal site.

In the portal system 10 (left part of FIG. 2A) a new com-
ponent 21 is implemented: An instantiation component 21.
This instantiation component 21 has appropriate interfaces to
the portal 10, to the runtime container 12, the deployment
component 14 as well as to input/output and send/receive
functionalities in order to communicate across the internet or
another network with an artifact registry service 22, which is
in turn also new and provided by the present invention.

In the artifact registry service 22 a further discovery com-
ponent 24 is provided, as well as a registry component 26 and
a notification component 28. Further, the before mentioned
components have appropriate APIs in order to communicate
with each other and with a template catalogue 30 as well as
with an artifact registry 32. Further, send and receive func-
tionality is provided and not explicitly depicted in order to
communicate with either the portal 10 or any independent
software vendor 34 (ISV) depicted in the right hand portion of
FIG. 2.

US 9,354,848 B2

5

The independent software vendor 34 may be represented
for example by a portal or by any other suited data source
which includes one or a plurality of artifact 36 which are
collected in the artifact registry 32 of the respective service
22. It should be noted that a plurality of independent software
vendors 34 register their respective artifact 36 in this artifact
registry 32 such that there is built up a considerable collection
of such artifacts. In a preferred embodiment of the present
invention the artifacts are ordered by incorporating them into
a given taxonomy which is preinstalled at the artifact registry
32.

In a similar way a template catalogue 30 is provided at the
artifact registry service 22 which comprises a collection of
templates, also preferably ordered by a given taxonomy,
wherein each template is usable by the inventional method in
order to generate a composite application by using one or
more of such templates as a base for the structure and function
of such composite application.

The discovery component 24 is preferably invoked by the
instantiation component 21, as the components are needed for
instantiating the composite application, and searches artifacts
and templates based on meta-data supplied with the invoca-
tion. A further example illustrating a more detailed descrip-
tion of the discovery component and its cooperation with the
registry component 26 and the notification and subscription
component 28 is given further below.

The registry component 26 provides the following basic
functionality:

The registry component 26 allows Independent Software
Vendors 34 to deploy their templates and artifacts into the
Artifact Registry Service 22. This component 26 is respon-
sible to store the templates, artifacts and their metadata in the
Template Catalog 30 and Artifact Registry 32.

The notification and subscription component 28 imple-
ments some logic which alerts about available artifact updates
which can then be provided automatically to the instantiation
component 21 of the portal 10. Alternatively or in combina-
tion, specific versions of artifacts or composite applications
can be selected manually after being offered for instantiation
by this component 28.

With further reference to FIG. 2B the template is enhanced
by a meta data collection 48 to contain meta-data about com-
ponents instead of directly listing the components that shall
be used.

When a template is instantiated, the lookup component 42
interprets the component description and searches for suit-
able components in the local list 27 of components and by
using the discovery component 24.

The independent software vendor 34 is assumed now to
upload, store and register the templates and artifacts he is
offering for purchase and use by others. The storage location
in this example is the template catalogue 30 and the artifact
registry 32, see FIG. 2A.

With further reference to FIGS. 3A, 3B, and 4A, 4B, as
well as FIGS. 5A, 5B some control flow diagrams (A) and
interaction charts (B) are discussed which illustrate important
steps of the inventional method.

With reference to FIGS. 3A and 3B, respectively, after
invocation 310, in a step 320 the discovery component 24
searches for a template via a dedicated template discovery
service. This is done in order to build up a new composite
application as it was mentioned further above according to the
objective of the present invention. More details are given
further below describing according to which preferred
aspects such search step 320 is implemented.

Once a template has been found by the search step 320 this
template will be downloaded to the portal 10, to the instan-

10

15

20

25

30

35

40

45

50

55

60

65

6

tiation component 21 thereof, in a step 330. Of course, more
than only one template can be downloaded in particular in a
situation in which several templates are stored in the template
catalogue 30 which fulfill basically the same technical func-
tionality. It should be mentioned that preferably also further
business meta information such as apprise to use such tem-
plate may be recorded at the template catalogue. Of course,
this additional information will be also downloaded to the
instantiation component 21.

At the portal site, the instantiation component first stores
the downloaded templates in a local template registry, as it is
known from the template catalogue 20 in FIG. 1.

With further reference to FIGS. 4A and 4B the instantiation
of'a template and the query of artifacts are described in more
detail:

In a first step 410 one of the templates which were down-
loaded in step 330 or which have been stored in the local
template registry 340 is selected for instantiation.

Inorderto make a good selection, a plurality of criteria may
be set up and offered to be controlled by an administration
user or by a business user which may use a man machine
interface which is smart enough to hide technical details and
to stress business details which may be understood by such
business user the composite application is deemed to cover.
Examples for criteria are the following: Scope of functional-
ity, price, quality of service, availability of service, etc.

In a further step 420 the artifact registry 32 is queried by the
instantiation component 21 by using meta data from the
selected template. The meta-data includes version compat-
ibility and dependency information to determine a matching
set of compatible artifacts. Examples for such meta data are
given and described in FIG. 8 later below. An example is:

/mail/protocolls| protocoll=POP3]/mail/protocolls

[protocoll=IMAP]

By that a mail component which is POP3 compliant, or
IMAP compliant, respectively, is searchable.

The result of step 420 is a set of artifacts which all fulfill
more or less well the requirement of the query. The skilled
reader will understand that the evaluation of the query result
is implemented in an application-driven way in order to give
more or less freedom to tailor the composite application
according to any specific business requirements.

Then, in a further step 430 the one or more missing artifacts
are downloaded to the instantiation component 21 of the
portal 10. There, they are preferably stored locally in the local
component registry 18, or, alternatively, in a separate registry,
step 440.

Then, all components required to build up a new composite
application should be available local at the portal 10 and ready
to be accessed by the instantiation component 21. According
to the present invention the composite application is now
automatically deployed from the selected components. Simi-
lar to the selection of templates also the selection of artifacts
may be performed preferably according to any given ranking
criteria which are predetermined in any way and adjusted to a
respective individual composite application. Similar criteria
as mentioned above can be taken also here. So, in the end a
new composite application has been generated and can be
instantiated by the instantiation component 21. So, this new
composite application may be used for the real business of a
respective enterprise.

In the course of time, however some of the components or
templates which are used for one or more composite applica-
tions are no more up-to-date because there may be a newer
version of such component or artifact offered by its producer.

According to a further preferred feature of the present
invention which may be used to enrich the inventional method

US 9,354,848 B2

7

such update components may be either automatically incor-
porated into an existing composite application or may at least
the automatically offered for manual inclusion into such com-
posite application. In the letter case a business user or a
business user accompanied by a programmer may decide on
this.

FIGS. 5A and 5B show the basic control flow of such
update:

In a first step 510 the independent software vendor 34
updates any given predetermined component which is
assumed now to be in use in a certain composite application.
Thus, as indicated in step 520, such updated component is
sent to the artifact registry service 22 and will be stored in the
artifact registry 32. Here, a trigger is fired in order to invoke
the notification component 28. The notification component
28 identifies the artifact, new version number, and optionally
a catalogue of new functions which the new update artifact
offers to the business user. The notification component 28
further stores in a dedicated mapping list an association
between each artifact, its version number and each composite
application which makes use of such artifact. In order to do
that, preferably a database is used which stores respective [Ds
for the composite application and a respective artifact. In this
database also a subscription tag is stored which is checked in
order to be sure to be obliged or not to notify the composite
application about the newly updated artifact. Here, it can be
assumed that if the subscription tag is set, then such obliga-
tion exists and a respective notification will be send from
component 28 to the instantiation component 21 of portal 10.
In this notification method the necessary 1Ds are used by the
notification method.

Then, in a step 530 a business user or a portal administra-
tion user can decide whether or not to adopt the new artifact.
In case they do adopt the new one, the new version of the
artifact is downloaded, step 540, from the artifact registry 32
to the instantiation component 21 and will be stored in the
artifact registry 18.

FIGS. 6A and 6B illustrate the control flow of the most
important steps of a preferred embodiment of the inventional
method, when automatically creating an instance of a com-
posite application using artifacts discovered and stored
locally according to FIG. 4.

In a first step 610 a certain template denoted as template X
is instantiated according to prior art, in a sequence of steps
620 to 670.

In a first step of the instantiation the lookup component 42
is invoked from the template. Then, in a step 620 the different
components which are comprised of the template X are iden-
tified. A sample component may for example be the IBM
portal WIKI BLOG component version 1.0. Next, in a further
step 630 all identified components are looked up in the local
list 27 of components. This is done according to prior art.
Then, every component identified in the template which is
decided in a decision 640 not being stored in the local com-
ponent list 27 is looked up in a step 650 in the remote list 60
of components. Further, the binary code for each required
component is requested and received from this remote list of
components and is deployed locally in a step 660.

Thereafter all components required from template X are
available for the instantiation component 21.

Thus, in a further step 670 an instance of the composite
application is created based on the results and data obtained
by the preceding steps. Then, the created instance is regis-
tered in the context of the portal, i.e. in appropriate context
storage. In particular, the number of created instances, their
initialization values and other information are registered.

35

40

45

8

A skilled reader will appreciate that all steps 610 to 670 can
be performed fully automatically without human interven-
tion. This is a significant advantage over prior art.

FIGS. 7A and 7B illustrate a further modification of the
before described method. The basic procedure is the same as
described before with reference to FIGS. 6A and 6B. For
example, as illustrated in step 710, an invocation of the
lookup component from a template occurs.

However, in a step 720 the meta-data stored in the template
X are identified and are abstracted according to a predeter-
mined taxonomy. So, in step 730 a component is analyzed to
be required which provides a certain functionality, instead of
an exact specification of the component as it was described
with reference to FIGS. 6A and 6B. So in this further modi-
fication any component which provides BLOG functionality
is accepted.

As a result of more search hits the look-up component
looks up all components that have a pre-specified functional-
ity and preferably performs a selection in order to obtain one
or more special components which fit best the functionality
requirement. It should be remarked that in this context prior
art methods to instantiate a composite application fail if the
component specified in step 620 does not exist in the local
component storage. Here, in contrast, according to this spe-
cial embodiment the choice of components is significantly
enlarged and the components can be selected according to
their scope of functionality instead to be constrained to satisfy
the request with the exact component specified by name and
version number, possibly vendor name, etc.

The rest of the creation procedure is the same as described
before with reference to FIG. 6.

With further reference now to FIG. 8 further details are
given telling a skilled reader how to manage the selection of
artifacts and templates. This includes how to perform a pars-
ing of the data source for a predetermined searched compo-
nent according to a predetermined functionality specification.

The input and output parameters of components are
described preferably via portal property broker WSDL frag-
ments.

The properties of the components are defined via domain
specific XML fragments. A domain may be defined via the
XML namespace. The properties depend on a respective
domain, see the samples given in FIGS. 8 and 9.

According to FIG. 8 a mail component having the business
functionality of standard business mail uses a http server, is
compliant to protocols SMTP and POP3, and offers LDAP
functions.

Further, a calendar component uses a http server, uses a
protocol “iCal” and has also LDAP functionality.

Further, a document library component uses again a http
server, stores a minimum document size of 10 (arbitrarily
defined units), and a maximum capacity of 100 units, and uses
a folder structure of the depth of at least 100.

With respect to identification of appropriate component
functionality, preferably Xpath queries are used to lookup
components with the required meta-data. The query service
called by the portal can be implemented as a Web service or a
REST service.

Examples for queries for above referred sample compo-
nents are given as follows:

For a mail component:
/mail/protocolls[protocoll=POP3]/mail/protocolls
[protocoll=IMAP]

For a document library component:
/doclib/size[min>20]

Of course, different syntax can be used as long as a differ-

ent syntax is pre-defined by a respective standard.

US 9,354,848 B2

9

The invention can take the form of an entirely hardware
embodiment, an entirely software embodiment or an embodi-
ment containing both hardware and software elements. In a
preferred embodiment, the invention is implemented in soft-
ware, which includes but is not limited to firmware, resident
software, microcode, etc.

Furthermore, the invention can take the form of a computer
program product accessible from a computer-usable or com-
puter-readable medium providing program code for use by or
in connection with a computer or any instruction execution
system. For the purposes of this description, a computer-
usable or computer readable medium can be any apparatus
that can contain, store, communicate, propagate, or transport
the program for use by or in connection with the instruction
execution system, apparatus, or device.

The medium can be an electronic, magnetic, optical, elec-
tromagnetic, infrared, or semiconductor system (or apparatus
ordevice) or a propagation medium. Examples of'a computer-
readable medium include a semiconductor or solid state
memory, magnetic tape, a removable computer diskette, a
random access memory (RAM), aread-only memory (ROM),
arigid magnetic disk and an optical disk. Current examples of
optical disks include compact disk—read only memory (CD-
ROM), compact disk—read/write (CD-R/W) and DVD.

A data processing system suitable for storing and/or
executing program code will include at least one processor
coupled directly or indirectly to memory elements through a
system bus. The memory elements can include local memory
employed during actual execution of the program code, bulk
storage, and cache memories which provide temporary stor-
age of at least some program code in order to reduce the
number of times code must be retrieved from bulk storage
during execution.

Input/output or /O devices (including but not limited to
keyboards, displays, pointing devices, etc.) can be coupled to
the system either directly or through intervening I/O control-
lers.

Network adapters may also be coupled to the system to
enable the data processing system to become coupled to other
data processing systems or remote printers or storage devices
through intervening private or public networks. Modems,
cable modem and Ethernet cards are just a few of the currently
available types of network adapters.

The circuit as described above is part of the design for an
integrated circuit chip. The chip design is created in a graphi-
cal computer programming language, and stored in a com-
puter storage medium (such as a disk, tape, physical hard
drive, or virtual hard drive such as in a storage access net-
work). If the designer does not fabricate chips or the photo-
lithographic masks used to fabricate chips, the designer trans-
mits the resulting design by physical means (e.g., by
providing a copy of the storage medium storing the design) or
electronically (e.g., through the Internet) to such entities,
directly or indirectly. The stored design is then converted into
the appropriate format (e.g., GDSII) for the fabrication of

10

15

35

40

45

10

photolithographic masks, which typically include multiple
copies of the chip design in question that are to be formed on
a wafer. The photolithographic masks are utilized to define
areas of the wafer (and/or the layers thereon) to be etched or
otherwise processed.

The invention claimed is:

1. A method for automatically assisted generation of com-
posite applications which are composed of instantiable com-
ponents comprising the steps of:

a) dynamically accessing a data source comprising one or
more components being potentially suitable for being
used within a composite application,

b) parsing said data source to identify the one or more
components matching a predetermined functionality
specification standard,

¢) ranking the identified one or more components accord-
ing to predetermined ranking criteria,

d) defining a list of selected usable components from said
ranking,

e) storing at least a subset of said selected usable compo-
nents locally,

f) automatically deploying said composite application
from said selected usable components;

g) monitoring the selected usable components for updates
to ones of the selected usable components used for an
instantiation of the composite application;

h) upon discovering an update for one of the ones of the
selected usable components used for the instantiation of
the composite application, checking to determine
whether requirements of the one comply with require-
ments of the composite application; and,

1) upon determining that the requirements of the one com-
ply with the requirements of the composite application,
automatically binding the update for the one into the
composite application.

2. The method according to claim 1, wherein dynamically
accessing the data source and also parsing said data source are
implemented within a discovery component, as a part of an
artifact registry service, requestable via a network request by
an application instantiation component implemented as a part
of a template application infrastructure of a portal.

3. The method according to claim 1, wherein the templat-
ing application infrastructure includes a meta data collection
means comprising meta-data about said one or more compo-
nents, and a lookup component, which when a template is
instantiated, interprets meta-data of a component description
and searches for suitable components in a local list of com-
ponents and/or in a remote data collection by using a discov-
ery component as a part of a remote service.

4. The method according to claim 1, further comprising the
step of:

discovering components from data sources located local or
remote, and automatically installing a discovered com-
ponent into said composite application.

#* #* #* #* #*

